[leetcode]Distinct Subsequences @ Python
原题地址:https://oj.leetcode.com/problems/distinct-subsequences/
题意:
Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE"
is a subsequence of "ABCDE"
while "AEC"
is not).
Here is an example:
S = "rabbbit"
, T = "rabbit"
Return 3
.
解题思路:这道题使用动态规划来解决。题的意思是:S的所有子串中,有多少子串是T。下面来看看状态转移方程。dp[i][j]表示S[0...i-1]中有多少子串是T[0...j-1]。
当S[i-1]=T[j-1]时:dp[i][j]=dp[i-1][j-1]+dp[i-1][j];S[0...i-1]中有多少子串是T[0...j-1]包含:{S[0...i-2]中有多少子串是T[0...j-2]}+{S[0...i-2]中有多少子串是T[0...j-1]}
当S[i-1]!=T[j-1]时:dp[i][j]=dp[i-1][j-1]
那么初始化状态如何确定呢:dp[i][0]=1;S[0...i-1]只有一个子串是空串。
代码:
class Solution: # @return an integer # @dp # dp[i][j] means how many first j of T is sub of first i of S. def numDistinct(self, S, T): dp = [[0 for i in range(len(T)+1)] for j in range(len(S)+1)] for j in range(len(S)+1): dp[j][0] = 1 for i in range(1, len(S)+1): for j in range(1, min(i+1, len(T)+1)): if S[i-1] == T[j-1]: dp[i][j] = dp[i-1][j] + dp[i-1][j-1] else: dp[i][j] = dp[i-1][j] return dp[len(S)][len(T)]